SLAC National Accelerator Laboratory

Researchers at the Department of Energy’s SLAC National Accelerator Laboratory in Menlo Park have invented an emergency ventilator that could help save the lives of patients suffering from COVID-19, the disease caused by novel coronavirus SARS-CoV-2.

Using standard parts that cost less than $400, the ventilator could be an affordable option when more sophisticated technology is not available, in short supply or too expensive.

“We wanted to build the simplest device that could be effective,” said Martin Breidenbach (pictured top), professor emeritus of particle physics and astrophysics at SLAC and Stanford University, who led the project and hosted the initial studies in his home workshop. “Our acute shortage ventilator is exactly that, and we now want to get it into use as quickly as possible.”

While SLAC and Stanford do not produce or distribute this ventilator, they are offering the technology at no cost to others who want to build the ventilator and deploy it after having obtained regulatory approvals. The scientists described the device in a recent paper posted to the medRxiv preprint server.

A fancy version of the simplest technology

Ventilators provide air to patients who can’t breathe sufficiently on their own – a common problem for those severely affected by COVID-19.

A ventilator’s operating principle is simple: It compresses oxygen-rich air and pushes it through tubes into a patient’s lungs, expanding them and helping the patient take up oxygen. The lungs contract on their own, pushing the air back out. Then the cycle starts over.

In the simplest version, doctors squeeze a self-inflating bag by hand to pump air into the lungs. High-end automated versions compress the air in other ways and use complex electronics to control pressure, volume, air flow and other parameters.

SLAC’s emergency ventilator (picture above) is based on a simple model, but it adds a mechanism that automatically squeezes the self-inflating bag. The system also incorporates modern, inexpensive electronic pressure sensors and microcomputers with sophisticated software that precisely controls the squeeze. The microcomputers also drive a small control panel, and operators can control the system with that or with a laptop computer. The rest is standard hospital parts.

Other groups have developed emergency ventilators in recent months, often by simplifying fancier machines. “Our invention stands out for the opposite approach: We made a fancier version of the simplest ventilator design,” said SLAC project scientist Christina Ignarra, who helped build the device.

Inexpensive ventilator helpful where medical resources are scare

The simple design allowed the team to develop, build and test the device in about four months. It also made the ventilator very inexpensive ­– less than $400 per unit, compared to $20,000 or more for a professional-grade system with field support.

“These qualities should make the ventilator particularly helpful for mid- and low-income countries, where medical resources are scarce,” said Michael Bressack, a Bay Area pediatrician and ICU doctor, who has been on several medical missions in Asia, Africa and South America.

To jumpstart the project without lab access due to the Bay Area’s shelter-in-place order, Breidenbach began building several prototypes in his home workshop. He used materials around the shop, ventilator parts bought out of pocket from high-tech distributors, and other components dropped off by team members at his home. He tested what he had built with a Michigan Instruments Lung Simulator that simulates the behavior of sick and healthy human lungs. With additional support from the DOE and Stanford, the project quickly expanded and the team set up four more prototypes at SLAC once the scientists were allowed to go back to the lab.

They also took the ventilator to the VA Palo Alto Health Care System for more advanced tests (pictured above). In particular, they wanted to make sure their device fulfilled requirements from the Association for the Advancement of Medical Instrumentation for simplified ventilator designs.

Available at no cost

The tests were successful, and the team is now giving their invention away for free. This is about saving lives, not about making money, they said.

“We’re soliciting proposals from companies that are willing to take the technology beyond the lab and deploy it in the field,” said Evan Elder from Stanford’s Office of Technology Licensing (OTL), who is helping with getting the word out. “When we find corporate partners that are a good fit, we’ll be offering royalty-free licenses for at least a year.” Based on the state of the pandemic, this approach will then be reevaluated.

Find out more about the project or contact the ventilator team online, or Stanford OTL’s techfinder website.

Part of the project was supported by the DOE Office of Science through the National Virtual Biotechnology Laboratory, a consortium of DOE national laboratories focused on response to COVID-19, with funding provided by the Coronavirus CARES Act.

Read more about COVID-19 research at SLAC.

Photo of Martin Breidenbach in home lab by Jacqueline Orrell/SLAC National Accelerator Laboratory; photo of inexpensive ventilator by Alberto Gamazo/SLAC National Accelerator Laboratory; photo of ventilator being test at VA Palo Alto by Sander Breur/SLAC National Accelerator Laboratory

{ Be the first to comment }

SLAC and Berkeley Lab team up for virtual summer program accelerating girls’ engagement in STEM

SAGE-S (Science Accelerating Girls’ Engagement in STEM) is a one week summer program for public high school students (age 14-17) which aims to foster innovation, creativity, and collaboration in young women who have limited exposure to STEM (science, technology, engineering and mathematics) fields. Ninety-eight students, representing 42 northern California public schools and speaking 18 different […]

Click to read more →

SLAC joins the global fight against COVID-19 – Part 1

As part of the international response to the COVID-19 pandemic, the U.S. Department of Energy’s SLAC National Accelerator Laboratory in Menlo Parkhas re-opened some of its facilities for essential research on the atomic structure of the virus and how it interacts with potential treatments and vaccines. SLAC scientists are also leading the development of global standards […]

Click to read more →

Meet Hannah Pollek, who’s helping put the pieces of a giant telescope camera together

At 8:00 am each morning, the Large Synoptic Survey Telescope (LSST) camera’s integration and testing team shuffles into a conference room at  SLAC National Accelerator Laboratory in Menlo Park to orchestrate the day’s activities. Hannah Pollek is a relative newcomer to the team, but she joined at an exciting time. Within the year, barring any […]

Click to read more →

SLAC talk about “the quark discoveries” set for Oct. 14

To celebrate the 50th anniversary of the quark discovery, SLAC will host a special colloquium on Monday, Oct. 14 from 3:30-4:30 pm. SLAC’s Martin Breidenbach, who as an early-career physicist at MIT contributed to the discovery, will go back in time and share his firsthand account of those exciting times in particle physics and some […]

Click to read more →

Retired SLAC physicist Gregory Loew writes a book about The Human Condition

We arrived at Gregory Loew’s home in Atherton to talk about his new book, The Human Condition: Reality, Science and History, but our conversation was initially derailed by the news that Steph Curry had purchased a home a couple of houses away for $31 million. “It’s crazy because I paid $67,000,” Gregory chuckled, admitting that was a […]

Click to read more →

Congressional representatives visit SLAC and other national laboratories

Last week, Congresswoman Anna Eshoo (D-CA) (pictured 5th from right) was part of a congressional delegation that visited SLAC National Accelerator Laboratory in Menlo Park. Also along for the visit were Congressman Bill Foster (D-IL) and Congressman Jerry McNerney (D-CA).  Other congressional representatives toured the Lawrence Berkeley National Laboratory and the Lawrence Livermore National Laboratory. It was […]

Click to read more →

“3D Printing for Perfect Metal Parts” is next SLAC lecture on March 26

Christopher Tassone will be speaking at the SLAC National Accelerator Laboratory [Panofsky Auditorium Science and User Support Building (BLDG 53)] on Tuesday, March 26 at 7:30 pm. Throughout human history, improvements in the structure of metals have been essential to the sharpness of swords and the strength of steel girders. Now we’d like to produce turbine blades […]

Click to read more →

Remastered 1964 films by Menlo Park filmmaker show origins of SLAC

A pair of 1964 films detailing the construction of Stanford Linear Accelerator Center, later renamed SLAC National Accelerator Laboratory, were recently remastered and are now available for viewing on YouTube thanks to a partnership between the films’ producer, J. Douglas Allen (pictured), and the SLAC Archives, History & Records Office. The films provide a fascinating […]

Click to read more →

Nobel Prize-winning SLAC physicist Burton Richter dies at age 87

Burton Richter, the Paul Pigott Professor in the Physical Sciences, Emeritus, former director of the Department of Energy’s SLAC National Accelerator Laboratory in Menlo Park, and winner of the 1976 Nobel Prize in physics, died July 18 in Palo Alto. He was 87. Richter’s Nobel Prize-winning discovery of the J/psi subatomic particle, shared with MIT’s […]

Click to read more →

Middle schoolers participate in the Greene Scholars Program Summer Science Institute at SLAC

The California Alliance of African American Educators Greene Scholars Program Summer Science Institute at SLAC began three years ago. The annual program was organized by an employee resource group known as CORE (Committee for Outreach, Recruitment & Engagement of Ethnic Minorities) in collaboration with Stanford University. While the program has welcomed high school students for […]

Click to read more →